
Abstract Flowering dates and life forms of all

available Brassica napus accessions conserved at

the North Central Regional Plant Introduction

Station (NCRPIS) were characterized, and a

survey of molecular variation was conducted by

using simple sequence repeats (SSR) in order to

support better management of accessions with

diverse life forms. To characterize flowering

phenology, 598 B. napus accessions from the

NCRPIS collection were planted in Iowa and

Kansas field sites together with a current com-

mercial cultivar and observed for days to flower-

ing (first, 50% and 100% flowering) in 2003. Days

from planting to 50% flowering ranged from 34 to

83 in Iowa and from 53 to 89 in Kansas. The mean

accumulated growing degree days (GDD) to 50%

flowering were 1,997 in Iowa, and 2,106 in Kansas.

Between locations, the correlation in flowering

time (r = 0.42) and the correlation in computed

GDD (r = 0.40) were both significant. Differ-

ences in flowering-time rank were observed for

several accessions. Accessions that failed to

flower in Iowa in a single growing season com-

prised 28.5% of the accessions; of the flowering

accessions, 100% plant flowering was not always

achieved. Accessions were grouped according to

flowering time. A stratified sample of 50 acces-

sions was selected from these groups, including 10

non-flowering and 40 flowering accessions of

diverse geographic origins and phenological var-

iation. The flowering time observed in the sam-

pled accessions when grown in the greenhouse

were found to be significantly correlated to the

flowering time observed in the field locations in

Iowa (r = 0.79) and Kansas (r = 0.49). Thirty SSR

markers, selected across 18 Brassica linkage

groups from BrassicaDB, and 3 derived from

Brassica expressed sequence tags (ESTs) were

scored in the stratified sample. An average of

three bands per SSR primer pair was observed.
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Associations of SSR marker fragments with the

life forms were determined. Analysis of molecular

variation by using cluster analysis and ordination

resulted in recognizable, distinct groups of annual

and biennial life-form types, which may have di-

rect applications for planning and management of

future seed regenerations.
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Introduction

Brassica napus is an amphidiploid (AACC gen-

ome, 2n = 38) that is believed to have arisen from

interspecific hybridization between the diploid

species Brassica rapa L. (syn. Brassica campestris;

AA genome, 2n = 20) and Brassica oleracea L.

(CC genome, 2n = 19) (Sauer 1993; Gómez-

Campo 1999). B. napus has a short evolutionary

history since it is presumed to have arisen from

cultivation, and no true wild forms have been

found (Lackey 1996; Gómez-Campo and Prakash

1999). This species is believed to have originated

in the Mediterranean region of southwestern

Europe where native populations of B. rapa and

B. oleracea overlap. B. napus populations can be

classified into annual or biennial forms. The

annual forms are called spring rapes and the

biennial forms are called winter rapes

(McNaughton 1995). Spring rapes are sown and

harvested in the same season, while winter rapes

are sown in the fall and require vernalization

before flowering in the next season (Butruille

et al. 1999). It is believed that annual and winter

type B. napus are distinct groups; intercrossing

between these types is still not common even in

contemporary breeding programs (Diers and

Osborn 1994).

Extensive genetic resource collections of

Brassica exist to support both public and pri-

vate breeding programs (Boukema and van

Hintum 1999). The USDA-ARS North Central

Plant Introduction (NCRPIS) in Ames, Iowa

has been mandated in the U.S. to curate

germplasm of B. napus along with more than 20

other species of Brassica and their wild and

weedy relatives. Both annual and biennial

populations are represented among the acces-

sions conserved by the NCRPIS, and possibly

some of mixed life forms. However, not every

accession is linked to passport or characteriza-

tion data describing the type of life form.

Information on an accession’s life form prior to

regeneration facilitates more efficient resource

management by identifying those that require

vernalization, a time and labor-intensive process

that requires specialized facilities. If accessions

consist of mixed life forms, regeneration methods

can be modified to preserve their genetic profiles.

To date, all types have been subjected to vernal-

ization treatment and then transplanted to the

field as part of standard regeneration procedures.

More accurate information on the flowering data

of annual types can be collected without vernali-

zation, since exposure to cold treatment may lead

to precocious flowering (Friend 1985; Sovero

1993). At present, the available B. napus flower-

ing data on the ARS-GRIN database (http://

www.ars-grin.gov/npgs) indicates ‘days to flower’

which include the number of days from the time

accessions are germinated in blotter boxes, ver-

nalized, and transplanted to the field. To com-

plement the existing data in the GRIN database,

we conducted this study and gathered flowering

data on annual accessions without vernalization.

The specific objectives are to (i) determine life

forms of all available B. napus accessions by using

morphological and phenological characterization,

(ii) survey the molecular genetic variation of

representative accessions, and (iii) identify life-

form specific markers to possibly help curators in

screening new accessions quickly without waiting

for actual flowering.

To address the last two of the aforementioned

objectives, simple sequence repeats (SSR) or

microsatellite markers were used. SSRs are fairly

robust, have good reproducibility, and are more

cost-effective compared to other marker systems

(Farooq and Azam 2002). It is anticipated that the

GRIN database will include SSR profiles of

germplasm accessions; some crops already have

SSR data. In Brassica, SSRs have been valuable

tools, and numerous SSR primer sequences are

already publicly available (Snowdon and Friedt

2004). SSRs have been used in Brassica research
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for such topics as seed-coat color mapping (Pad-

maja et al. 2005), varietal identification (Tonguç

and Griffiths 2004), and analysis of variation in

plant populations and germplasm collections

(Raybould et al. 1999; Westman and Kresovich

1999). It was also reported that a set of SSRs were

able to identify groups of annual and biennial

types of B. napus elite lines (Plieske and Struss

2001; Tommasini et al. 2003). Here we test whe-

ther it is also possible to identify life-form types

using diverse, heterogeneous germplasm collec-

tions of B. napus.

Methodology

Planting and characterization of flowering

time

In May 2003, 598 accessions of B. napus origi-

nating from 28 countries were planted at the

NCRPIS farm in Ames, Iowa together with ‘Hyola

401’, a commercial spring cultivar. In Ames, the

accessions were randomized and planted in three

replicates by direct seeding in 7-m, single-row

plots in a 0.78 ha field located at 42�00¢29.61†N,

93�39¢48.82†W. In April 2003, these same 598

accessions were also planted in 7-m, single-row

plots without replication (due to resource limita-

tions) at Kansas State University (KSU), Man-

hattan, Kansas. Data gathered in Iowa included:

(1) date of 50% germination, (2) date of first

flowering (when the first plant in the plot flow-

ered), (3) date of 50% flowering (when 50% of the

plants in the plot flowered), and (4) date of 100%

flowering. Data gathered in Kansas included date

of 50% flowering. Following characterization

during the 2003 field season, 50 accessions repre-

senting the range of flowering times observed as

well as diverse geographic sources were selected

(Table 1). These accessions were comprised of 10

accessions of non-flowering types (putative bien-

nials) and 40 of flowering types (putative annuals).

Selection was done by hierarchical clustering of

the flowering time and subsequent selection from

each of the resulting eight clusters based on geo-

graphic origin. The selected accessions included

cultivars and breeding lines. All of the selected

representative accessions from among the flow-

ering types attained at least 50% flowering in the

field in both locations.

In March 2004, seeds from the original seed lot

of the selected accessions were sown in 10 cm2

plastic pots in the greenhouse containing Sun-

shine Mix no. 1 (Sun Gro Horticulture, Bellevue,

WA). Twenty-four plants for each accession were

grown under a 16-h photoperiod to verify the life

form, determine correlations between flowering

time in the greenhouse and the field, and to ob-

tain leaf tissues for molecular-marker analysis.

Mean greenhouse temperature and illuminance

were recorded at 26�C and 3.9 klux, respectively,

by HOBO� H08-004-02 data loggers (Onset

Computer Corporation, Bourne, MA). The data

loggers were positioned at the leaf canopy level.

Plant material and DNA extraction

Leaf tissues were harvested when the plants in the

greenhouse were at the 3–4 leaf stage, when the

leaves contain relatively low amounts of poly-

saccharides (Hyam 1998). Twelve to 15 plants

were sampled per accession. The leaves were

lyophilized by freeze-drying and then stored in a –

80�C freezer until use. Genomic DNA extraction

was performed by using 1.0 g bulked tissue ob-

tained from equal weights of freeze-dried leaf

samples from individual plants within an acces-

sion. The bulked tissues were placed in 50 ml

screw-cap polypropylene tubes, each containing

approximately 1.5 ml glass beads. The tissue

samples were ground to a powder by agitating the

tubes on a paint shaker for 90 s. DNA was iso-

lated using the cetyltrimethyl ammonium bro-

mide (CTAB) method. The extracted DNA was

resuspended in 1· TE (1 mM Tris–HCl, 0.1 mM

EDTA, pH 8.0) with 3 ll of 10 mg/ml RNAseA

then incubated at 30�C for 30 min and placed on a

LabQuake� shaker (Barnstead Intl., Dubuque,

IA) at 4�C overnight. The samples were stored at

–20�C until use.

PCR amplification of microsatellites

Microsatellite primers were synthesized by Inte-

grated DNA Technologies (IDT, Coralville, IA)

based on published primer sequences from Uzu-

nova and Ecke (1999), Westman and Kresovich
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Table 1 List of accessions selected from the B. napus germplasm collection at NCRPIS

Plot IDa Accession Variety Sourceb DAP to 50% flowerc

13N Ames 6100 Jupiter Canada –
16N Ames 15650 Arco C10-2 Netherlands –
19N Ames 15654 Bienvenu United States –
21 Ames 15939 Comet Sweden 48
29N Ames 19202 Krasnodarskii Russia –
31 Ames 19204 Evvin Russia 41
32 Ames 19205 Kovalevskij Ukraine 46
36 Ames 26653 Westar United States 38
62 PI 311727 Bronowski Poland 53
88 PI 436555 Gan You no. 2 China 59
92N PI 443015 Gry Norway –
98N PI 458610 Wilhelmsburger New Zealand –
100 PI 458919 Brio France 44
108 PI 458930 Oro Canada 48
109N PI 458935 Brink Sweden –
113 PI 458940 Chisaya natane Japan 83
114 PI 458941 Norin 16 Japan 68
119 PI 458948 Gisora Germany 60
126 PI 458955 Prota Germany 41
138 PI 458971 Romeo France 39
173 PI 469756 Colza South Korea 41
174 PI 469757 Colza 18 Miroc South Korea 78
175 PI 469758 Dae cho sen South Korea 68
179 PI 469762 Dong Hae 2 South Korea 73
189 PI 469772 Dong Hae 16 South Korea 75
193 PI 469776 Dong Hae 21 South Korea 60
205 PI 469788 Fertodi South Korea 66
214 PI 469797 France 9 France 53
239 PI 469822 Iwashiro-natane South Korea 66
243 PI 469826 Janetzkis South Korea 63
276 PI 469859 Kuju 25 South Korea 40
298 PI 469881 Kuju 58 South Korea 76
303N PI 469886 Lenora South Korea –
311 PI 469894 Mali South Korea 35
327 PI 469911 Mokpo 5 South Korea 65
340 PI 469924 Mokpo 21 South Korea 59
346 PI 469930 Mokpo 27 South Korea 81
349 PI 469933 Mokpo 30 South Korea 69
356 PI 469940 Murame nadame South Korea 36
371 PI 469955 Norin #4 Japan 79
391 PI 469975 Norin 21 Japan 45
397 PI 469981 Norin 26 Japan 55
447 PI 470031 Su weon cheg South Korea 79
457 PI 470041 Taiwan 2 Taiwan 40
489 PI 470075 7003–2B-38 South Korea 83
502 PI 478340 O 84 China 42
539N PI 535866 Silesia Czechoslovakia –
573N Ames 22547 Bolko Poland –
555 PI 542984 Tri-Bridger United States 59
574 Ames 22548 Bronowski Poland 51

a Field plot number, ‘N’ suffix denotes non-flowering
b Country origin in ARS-GRIN; Bienvenu and Westar’s origin were changed to France and Canada, respectively (Diers and
Osborn 1994) in subsequent analyses
c Mean DAP values
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(1999) and the BBSRC BrassicaDB (http://bras-

sica.bbsrc.ac.uk). The 33 microsatellite loci are

presented in Table 2. To ensure representation of

several linkage groups, the microsatellites from

BBSRC were selected based on indicated linkage

map locations in BrassicaDB and from Lowe et al.

(2004). These microsatellites were developed

mostly from genomic libraries (Lowe et al. 2004).

Three primer pairs derived from Brassica EST

sequences were provided by Dr. Andrew Salywon

(USDA-Agricultural Research Service, U.S. Wa-

ter Conservation Laboratory, Phoenix, AZ) (see

Salywon et al. 2004 for detailed descriptions).

PCR was performed in 96-well MicrosealTM

polypropylene microplates (Bio-Rad Lab Inc.,

Hercules, CA) with each sample well containing

1 ll of genomic DNA (50 ng/ll), 8 ll of sterile

ddH2O, 1 ll 10· PCR buffer (200 mM Tris–HCl,

pH 8.4, 500 mM KCl), 0.5 ll dNTPs (2 mM), 0.3 ll

MgCl (50 mM), 0.1 ll of primers (50 uM), and

0.05 ll Taq polymerase (5 U/ll) (Invitrogen Corp.,

Carslbad, CA). A negative control, a sample from a

commercial hybrid (Hyola 401), and samples from

three rapid-cycling Brassica accessions (B. oleracea

TO 1000 DH3, B. rapa IMB 218 DH3, B. napus EL

6400 A) from Dr. J. Chris Pires (Univ. Missouri,

Table 2 List of the microsatellites analyzed, repeat motifs, size range of the amplified bands approximated from molecular
weight markers, and the number of bands observed in the bulked samples

Microsatellite Repeat Size range (kb) Total no. bands

Na10-B08 (CT)38 100–175 5
Na10-D03 (GT)11 150–190 2
Na10-E02 (GA)24 125–200 3
Na12-A02 (CT)16 150–200 3
Na12-A07 (GT)11 150–175 2
Na12-A08 (GA)28 150–300 4
Na12-C07 (CT)33 200–250 3
Na12-C08 (CT)50 275–350 3
Na12-F03 (GA)35 300–350 2
Na14-C12 (AG)17 190–200 3
Na14-D07 (CCG)3 150–175 2
Ni4-D09 (CT)25 175–200 2
Ol10-A05 (GA)43 110–275 7
Ol10-F11 (GGC)7 150–175 2
Ol10-F12 (CT)64 100–225 4
Ol11-C02 (GT)11 140 1
Ol11-H02 (AAC)18 180–200 2
Ol12-E03 (CCG)9 110–250 3
Ol12-G04 (TC)24 100–175 2
Ra2-D04 (CA)14 160–190 2
Ra2-E03 (CT)18 225–275 2
Ra2-E07 (GA)19 100–170 4
Ra2-F11 (CT)34 190–300 4
Ra2-G09 (CT)19 200–300 3
Ra3-H10 (GA)23 100–150 3
MR176a n.d. 120–290 8
MR181a (AG)36 100–190 5
35Db (GA)13 200–250 2
59A1b (CA)11 450 1
25Ab (CT)10 125–350 3
EST1c n.d. 90 1
EST2c n.d. 280 1
EST3c n.d. 90–115 4

Sequences were obtained from BBSRC BrassicaDB, except as noted; n.d.: not determined
a Uzunova and Ecke (1999)
b Westman and Kresovich (1999)
c A. Salywon (USDA-ARS, U.S. Water Conservation Laboratory, Phoenix, AZ)

Euphytica (2007) 153:43–57 47

123



Columbia, MO) were included in each microplate.

Thermal cycling was done by using DNA Engine�

(PTC-200TM) thermal cyclers (Bio-Rad Lab Inc.,

Hercules, CA) under the following conditions:

94�C for 2 min, then followed by 35 cycles of

amplification at 94�C for 30 s, 55.5�C for 30 s, 72�C

for 30 s, followed by a final extension at 72�C for

4 min. Different annealing temperatures were used

on two of the EST-derived primers, 53.4�C for EST

1 and 59.5�C for EST 2. All reactions with no initial

amplifications were repeated to confirm the results.

The PCR products were separated in a 4.0% aga-

rose gel prepared in 1· TAE (40 mM Tris–acetate,

1 mM EDTA, pH 8.3) with incorporated ethidium

bromide (0.46 lg/ml). Amplification products were

visualized with a UV light box (254 nm wave-

length) and photographed on a digital gel-docu-

mentation system. The bands were scored as

present (1) or absent (0) and recorded with refer-

ence to the molecular weight markers. They were

then treated for analysis as if they were dominant

markers, since it was not possible to calculate gene

frequencies as a result of bulking 12–15 plants per

accession.

Data analysis

Five accessions were not included in subsequent

analyses after determining that they were not

likely to belong to the B. napus species; two

accessions are probable members of B. rapa (PI

286418, Ames 21490), two of B. juncea (L.) Czern

(Ames 19197, Ames 24222) and one of B. olera-

cea L. (PI 357374). Likewise, changes in country

of origin of two accessions (see note Table 1)

were used in the computation of geographic dis-

tances. Descriptive statistics and preliminary

cluster analysis of flowering data were obtained

from JMP� version 5.1.2 software (SAS Institute,

Cary, NC). Growing degree days (GDD) were

computed for all flowering accessions by using the

formula GDD = (MinT + MaxT)/2 – BaseT,

where MinT is the lowest temperature of the day

and MaxT is the highest temperature of the day;

temperature thresholds for MinT and MaxT were

set to 0�C and 30�C, respectively. BaseT is the

temperature below which no development occurs

and was set to 0�C, based on recent research which

indicated that it was more accurate for B. napus

plant development than is the typical base tem-

perature of 5�C (Thomas 2003).

Because of bulking, analysis of SSR bands was

done following a shared-alleles method. Nei and

Li (1979) distance were computed using the for-

mula dD = 1–(2vij/2vij + wij + xij), where vij is the

number of bands in common between both

accessions; wij is the number of bands present in

the ith accession and absent in the jth accession;

xij is the number of bands absent in the ith

accession and present in the jth accession (Rief

et al. 2005). Cluster analysis was performed by

using the neighbor-joining method algorithm in

the NTSYS-pc version 2.20e software package

(Rohlf 2005). A v2-test for independence was

done to test the hypothesis that observed band

frequencies were independent of life form.

Associations between band presence and flower-

ing time were made using the non-parametric

Mann–Whitney-U test (equivalent to Wilcoxon

rank sum test) (Gebhart et al. 2004). Mantel tests

were performed to determine the correlation

between distance matrices (Koenig 1999) and

analysis of molecular variance (AMOVA) to test

for genetic differentiation. The last two afore-

mentioned tests, as well as calculations of genetic

distances based on shared alleles (Maguire et al.

2002) and geographic distances (computed using

latitude–longitude coordinates of the accessions’

origin), and principal coordinate analysis (PCA)

were done by using the GenAlEx v.6 software

package (Peakall and Smouse 2006).

Results

Characterization of flowering time

One hundred sixty-nine accessions, which repre-

sent 28.5% of the B. napus collection, did not

flower in Iowa. Four hundred twenty-five acces-

sions (71.5%) reached first flowering, 279 acces-

sions (47.0%) continued to 50% flowering, and

198 accessions (33.3%) achieved 100% flowering.

In the Ames location, the mean number of days

after planting (DAP) to 50% germination was

13 days and the mean DAP for first flowering was

49. For the 279 accessions that continued to the

50% flowering stage, the mean number of DAP
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was 55. The remainder did not reach that stage by

100 DAP when scoring ended. For the 198

accessions that achieved 100% flowering, the

mean number of DAP was also 55. This reflects

the phenomenon that those accessions that most

quickly reached the 50% flowering stage also

generally achieved 100% flowering first. For those

accessions that achieved 100% flowering, on

average, it took 7 days from first to 50% flower-

ing, and 3 days from 50% flowering to 100%

flowering. PI 537302 was the earliest flowering

accession, attaining 50% flowering at 34 DAP,

while the very late flowering accessions PI458940,

PI 469770, and PI 470075 attained 50% flowering

at 83 DAP. The plants of about 32% of the

flowering accessions flowered synchronously

(Fig. 1A). In Kansas, 50% flowering was

observed in 223 accessions with a mean of 74

DAP. In general, more B. napus accessions

flowered late when planted in Kansas (Fig. 1).

Correlation between the 50% flowering dates

observed in Iowa and Kansas was low (r = 0.42)

but significant (p < 0.0001). There was a mean

difference of 4 days between 50% flowering in

the two locations. The commercial cultivar Hyola

401 is the earliest to attain 50% flowering fol-

lowed by Ames 26654 at 53 DAP and 54 DAP,

respectively. Sixteen accessions reached 50%

flowering at 89 DAP. The flowering times ob-

served in the greenhouse for 50 selected repre-

sentative accessions were found to be correlated

to flowering times observed in the field in both

Iowa (r = 0.79, p < 0.0001) and Kansas (r = 0.43,

p = 0.008). However, the mean DAP to flowering

in the greenhouse were 62 to first flowering and

92 to 50% flowering, indicating that temperature

and photoperiod differences may have delayed

the development of flowering in a spring green-

house relative to summer field conditions.

Accumulated GDDs to flower were computed

for all flowering accessions. GDDs can better

describe the conditions required to reach physi-

ological developmental stages, such as flowering,

than ‘days to maturity’ alone (Eckert 2005). For

data from Iowa, the accumulated GDDs were

determined as follows: 207 ± 2 (mean ± s.e.) for

50% germination, 1008 ± 9 for first flowering,

1997 ± 29 for 50% flowering, and 2021 ± 28 for

100% flowering. For data from Kansas, the

accumulated GDD for 50% flowering was

2106 ± 22. Correlation between the accumulated

GDDs to 50% flowering in the two locations is

low but significant (r = 0.40, p < 0.0001). A

scatter-plot matrix of the GDDs in the two

locations is shown in Fig. 2. The estimates of

GDDs in the two locations used in this study

exceed the means and range of GDDs for each

growth stage compiled from research data of

Agriculture and Agri-Food Canada (AAFC) for

B. napus (Thomas 2003). The large mean values

might have been influenced by the predomi-

nance of mid- and late-flowering accessions in

the collection relative to those cultivated in

Canada.

Microsatellite analysis

A total of 98 bands and an average of 3 bands per

primer pair were observed based on all 33 SSRs

and bulked samples from 50 selected accessions.

The primer pairs all showed amplification, but

band presence in EST1 was observed in only one

accession. No polymorphism was observed in SSR

59A1. Single-band products were observed in

four of the SSR primer pairs, while the remaining

primer pairs amplified two to eight products

(Table 2). The number and size range of observed

bands amplified from the bulked tissues were

consistent with other studies (Allender 2004;

Tommasini et al. 2003). Across the 50 selected

accessions, 71.9% of bands showed presence ab-

sence polymorphism. The rate of polymorphism

was higher among the flowering types, 82.7%,

than for the non-flowering types, 61.2%. A v2-test

for independence indicated that there were sig-

nificant differences in band frequencies between

the non-flowering and flowering types

(p < 0.0001). Seventeen bands from 11 SSRs

were observed in only one type of life form; 12

bands were observed solely in flowering types and

5 solely in the non-flowering types. These bands

were from SSRs 25A, EST3, MR176, Na10-B08,

Na12-A08, Na12-C07, Na14-C12, Ol10-F11, Ol12-

G04, Ra2-E07, and Ra3-H10.

The observed frequencies of the unique bands

in the non-flowering types were very low.

However, results of Mann–Whitney-U tests indi-

cated that band presence in EST2, Na10-B08,
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Ol11-C02, Ra2-E07, and Ra2-F11 exhibited sig-

nificant associations with flowering time (Table 3).

A plot of the first two principal coordinates

(PCO) derived from computed genetic distances

from SSR-marker profiles allowed the visualiza-

tion of relationships among accessions (Fig. 3).

Axis 1 explains 25.81% of the observed variation

and axis 2, 18.35%. The non-flowering types

grouped in quadrant IV, as did known early

flowering cultivars in quadrant I. The pattern

observed in the PCO plot closely resembles

relationships among accessions when cluster

analysis was performed. The dendrogram sepa-

rated flowering and non-flowering types, and

early flowering accessions mostly grouped

together (Fig. 4). Among the non-flowering types,

only 539N (PI 535866, Silesia) was not within the

same cluster. No distinct clustering of mid- or

late-flowering accessions was observed. The

computed, mean distance among the non-flower-

ing types was 0.23, and among the flowering types

it was 0.28. The smallest distance observed was

0.06 between 31 (Ames 19204) and 32 (Ames

19205); both originated from the former Soviet
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Union. Other accessions with the same country of

origin also grouped together: 113 (PI 458940) and

114 (PI 458941) from Japan, 119 (PI 458948) and

126 (PI 458955) from Germany, and 62 (PI

311727) and 574 (Ames 22548) from Poland.

Accessions with the same variety name also

grouped together: 62 (PI 311727) and 574 (Ames

22548)—‘Bronowski’, and 327 (PI 469911), 340

(PI 469924), and 349 (PI 469933)—‘Mokpo’.

The dendrogram indicates greater similarity

between the rapid-cycling B. oleracea accession

and representatives of B. napus as compared to

the B. rapa control. This observation supports a

phylogeny proposed by Pradhan et al. (1992)

among the Brassica species that was derived from

analyses of cpDNA and mtDNA polymorphisms.

‘Hyola 401’ is in a cluster with the early flowering

accessions and known commercial canola culti-

vars, including 36 (Ames 2665, ‘Westar’), 21

(Ames 15939, ‘Comet’), and 108 (PI 458930,

‘Oro’). Pedigree information was not available in

the passport data of the canola cultivars, but their

clustering may be due to highly similar genetic

background. It has been suggested that there is a

single common origin for most of the oilseed B.

napus cultivars from results of RFLP analysis

(Song and Osborn 1992).

Results of Mantel tests indicated that the

computed genetic distances is weakly correlated

with geographic distances between the countries

of origin (r = 0.35, p < 0.001). The significance of

these correlations indicates that accessions with

proximate geographic origin are somewhat more

likely to have similar genetic profiles. Results of

analysis of molecular variance (AMOVA) among

different levels are presented in Table 4. The

population genetic differentiation based on the

binary data was given as Fpt, which is analogous

to Fst (Peakall and Smouse 2006). Fst values

range from 0, when the subpopulations are iden-

tical in allele frequencies to 0.5 if they are fixed

for different alleles. The computed values con-

sidering life forms (Fpt = 0.11) and geographical

origin (Fpt = 0.02–0.12) indicate that there is a

low to moderate genetic differentiation between

the specified groupings. Grouping by life forms

and by geographical regions explain 11% and 6%

of the molecular variation, respectively. Much of

the differentiation remained within the groupings

in all comparisons with explained variation rang-

ing from 88% to 98%. The results of the AM-

OVA analysis imply that there is some gene flow

between life forms and more extensive gene

exchange among geographic regions. Diers and

Fig. 2 Scatter-plot matrix of accumulated growing degree
days (GDDs) to 50% flowering in Iowa and Kansas
locations (density ellipse shown with a = 0.95)

Table 3 Results of
Mann–Whitney-U tests
for association

Non-specific and specific
bands in five SSRs with
significant association to
flowering time

SSR Band no. Size (kb) Band presence (%) Probability

Non-flowering Flowering

EST2 1 280 70 47.5 0.01
Na10-B08 1 100 30 42.5 0.00
Ol11-C02 1 140 60 85 0.04
Ra2-E07 2 150 – 20 0.03
Ra2-E07 4 100 – 37.5 0.04
Ra2-F11 1 190 30 35 0.01
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Osborn (1994) indicated that intercrossing

between annual and winter type B. napus is still

not common even in contemporary breeding

programs. The data obtained from clustering and

principal coordinate analyses as discussed above

support Diers and Osborn’s statements that these

B. napus life forms are distinct groups.

Discussion

In the conservation of plant genetic resources, the

availability of characterization data and infor-

mation on available diversity help germplasm

users identify the accessions of interest and also

provide plant breeders initial data for use in crop

improvement programs. In this study, a survey of

molecular variation was conducted and additional

information was obtained to determine the life

form of the B. napus accessions in the collection.

The observed differences in the flowering time of

annual accessions in the two locations gave some

information on the effect of environment on the

flowering of B. napus. The flowering time differ-

ences might have been caused by the varying

responses of the genotypes to temperature and

photoperiod (Friend 1985). Such differences sug-

gest that it is desirable to conduct characteriza-

tion and evaluation trials for Brassica germplasm

in more than one location, with distinct temper-

ature and photoperiod regimens if resources

permit. In the model species Arabidopsis, photo-

period and temperature affect the variation in

flowering time by targeting expression of the

CONSTANS and FLOWERING LOCUS C

(FLC) genes located in different pathways. The

major gene in the Arabidopsis photoperiod

pathway is the CONSTANS gene, while in the

autonomous and vernalization pathways the ma-

jor gene is FLC (Simpson et al. 1999). Research

progress in Arabidopsis has enabled the identifi-

cation and cloning of related genes in Brassica

that are known to directly influence the onset of

flowering (Lagercrantz et al. 2002; Martynov and

Khavkin 2004, Osborn and Lukens 2003). In

Brassica, CONSTANS has been proposed to have

the greatest influence in the flowering time vari-

ation in B. nigra and B. oleracea (Bouhon et al.

1998; Lagercrantz et al. 1996). In B. napus, studies

suggest that it is the FLC gene that influences

flowering time in this species (Osborn and Lukens

2003). Exposure to vernalization treatment

diminishes the effect of late-flowering alleles of

FLC (Osborn and Lukens 2003). We have also

examined and compared the FLC sequence vari-

ation between spring and winter types using the

same set of accessions in this study, the results

will be published in another paper.

Fig. 3 Plot of variation in
flowering (s) and non-
flowering (m) accessions
using eigenvectors
derived from genetic
distances by using shared
alleles. Labels correspond
to identification listed in
Table 1
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In several accessions of B. napus germplasm

that we have regenerated in this study, the

observed differences in flowering time within

accessions can be a concern for germplasm man-

agers. The heterogeneity of flowering within

accessions during regeneration has the potential

to influence changes in allelic frequency and

genetic profile over time, through assortative

mating and possible selection against infrequent

phenological phenotypes or those that do not

Nei and Li distance

0.00 0.11 0.23 0.34 0.45

 13N-CA
 19N-US

 109N-SE
 138-FR

 100-FR
 303N-KR

 16N-NL 
 29N-RU

 573N-PL 
 88-CN 

 92N-NO
 98N-NZ

 21-SE 
 36-US

 31-RU 
 32-UA

 108-CA
 119-DE

 126-DE
 62-PL
 574-PL

 Hyola_401 
 179-KR

 113-JP
 114-JP

 175-KR
 173-KR

 174-KR
 189-KR

 193-KR
 205-KR

 371-JP
 391-JP

 457-TW
 327-KR
 340-KR
 349-KR

 555-US
 356-KR
 397-JP

 346-KR
 243-KR

 489-KR
 502-CN

 311-KR
 214-FR

 239-KR
 276-KR

 447-KR
 539N-CZ

 TO_1000_DH3
 298-KR

 EL_6400_A
 IMB_218_DH3

Fig. 4 Neighbor-joining
tree showing the
relationships among the
selected B. napus
accessions and rapid-
cycling lines (B. oleracea
TO 1000 DH3, B. rapa
IMB 218 DH3, B. napus
EL 6400 A). Labels
correspond to plot
numbers listed in Table 1
with added suffixes
indicating country origin
(in two letter ISO codes)
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flower under local conditions. Significant shifts in

phenotype frequencies have been documented to

occur in B. napus with just one cycle of germ-

plasm regeneration (Diaz et al. 1997). In the

present study, more than half of all flowering

accessions did not progress to complete flower-

ing. Only plants that flowered will be repre-

sented in the regenerated sample, resulting in

possible genetic shifts. Non-flowering of spring

types and of vernalized winter Brassica has also

been documented and attributed to the effects

of high temperatures which often cause dever-

nalization (Dahanayake and Galwey 1998). If

needed, the floral induction can be accom-

plished through the application of gibberellins

at the B. napus rosette stage (Dahanayake and

Galwey 1999).

We have determined that it is possible to clas-

sify diverse accessions of B. napus into life-form

types using SSRs. This finding corroborates past

results of studies in breeding lines and elite culti-

vars of winter and spring types (Charters et al.

1996; Lombard et al. 1999; Plieske and Struss 2001;

Tommasini et al. 2003). Our study further dem-

onstrates that a limited set of SSRs can generate

sufficient variability to distinguish among the life-

form types in our set of germplasm. The data

generated using SSRs may also prove useful in

breeding programs. The results of the SSR analysis

may have applications in screening new sets of B.

napus accessions without life form data or possibly

in identifying early or late flowering accession. The

usefulness of marker–trait associations in assessing

the genetic potential in germplasm collections has

been previously studied in crops such as alfalfa

(Skinner et al. 2000), cotton (Abdurakhmonov

et al. 2005), potato (Gebhart et al. 2004), and rice

(Kadirvel and Gunathilagaraj 2003). In B. napus, it

has been demonstrated that molecular markers

can be used in identifying genotypes with certain

linolenic and erucic acid levels (Rajcan et al. 1999)

and in predicting hybrid performance as suggested

by significant correlations between agronomic

traits, such as plant height and seed yield, and

genetic distances from markers (Riaz et al. 2001;

Yu et al. 2005).

Summary and conclusions

Characterization of flowering time in the field

enabled the identification of life forms of gene-

bank accessions of B. napus that had not been

previously regenerated. The flowering dates

obtained will be made available to complement

existing data on the ARS-GRIN database. Our

flowering dates should better represent a true

phenology for the annual types, since the seed-

lings were not vernalized. An observed shift in

flowering time in several accessions when planted

in different locations was observed; this indicates

that future flowering data characterizations

Table 4 AMOVA by life form (non-flowering versus flowering) and by geographic regions (Europe, North America and
Asia-Pacific-Oceania)

Source df SS MS Est. var. % Fpt Probability

Life forms
Among life forms 1 33.320 33.320 1.390 11 0.111395 0.001
Within life forms 48 532.100 11.085 11.085 89
Geographical regions
All accessions
Among regions 2 40.207 20.103 0.677 6 0.057157 0.002
Within regions 47 525.213 11.175 11.175 94

Flowering accessions
only
Among regions 2 46.755 23.378 1.498 12 0.124442 0.001
Within regions 37 389.845 10.536 10.536 88
Non-flowering

accessions only
Among regions 2 22.000 11.000 0.179 2 0.016722 0.399
Within regions 7 73.500 10.500 10.500 98
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should be conducted by using multiple sites and

interpreted accordingly.

Clustering based on marker profiles derived

from microsatellites segregated groups of life

forms and also identified probable duplicates

(accessions with the same name). Results of the

ordination analysis and AMOVA revealed that

diversity ‘within’ life forms is greater than

‘between’ types of life forms in our selected set of

representative accessions, which is in agreement

with results from the clustering analysis. Signifi-

cant, but relatively weak associations between

derived genetic distances and geographic origins

and between derived genetic distances and life

forms were found. Seventeen bands from 12 SSR

loci were observed to be uniquely present within

accessions exhibiting a particular life form, but

often these occurred with low frequencies. Addi-

tional evaluation of 11 SSR loci identified signifi-

cant associations of alleles with flowering time.

Additional investigation is needed to determine if

these are in non coding regions, proximal to or

within genomic regions that control vernalization

and flowering response, or in linkage disequilib-

rium with such regions.
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